Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.083
Filtrar
1.
Mol Microbiol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623070

RESUMO

Microbiotas are complex microbial communities that colonize specific niches in the host and provide essential organismal functions that are important in health and disease. Understanding the ability of each distinct community member to promote or impair host health, alone or in the context of the community, is imperative for understanding how differences in community structure affect host health and vice versa. Recently, a reference 12-member microbiota for the model organism Caenorhabditis elegans, known as CeMbio, was defined. Here, we show the differential ability of each CeMbio bacterial species to activate innate immunity through the conserved PMK-1/p38 MAPK, ACh-WNT, and HLH-30/TFEB pathways. Although distinct CeMbio members differed in their ability to activate the PMK-1/p38 pathway, the ability to do so did not correlate with bacterial-induced lifespan reduction in wild-type or immunodeficient animals. In contrast, most species activated HLH-30/TFEB and showed virulence toward hlh-30-deficient animals. These results suggest that the microbiota of C. elegans is rife with bacteria that can shorten the host's lifespan if host defense is compromised and that HLH-30/TFEB is a fundamental and key host protective factor.

2.
Foodborne Pathog Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625018

RESUMO

Salmonella Typhimurium (STM) is an important zoonotic Gram-negative pathogen that can cause infection in a variety of livestock and poultry. Meanwhile, as an important foodborne pathogen, the bacterium can survive in various stressful environments and transmits through the fecal-oral route, posing a serious threat to global food safety. To investigate the roles of STM1863, a member of the DUFs protein family, involved in STM environmental adaptation, biofilm formation, and virulence. We analyzed the molecular characteristics of the protein encoded by STM1863 gene and examined intra- and extracellular expression levels of STM1863 gene in mouse macrophages. Furthermore, we constructed STM1863 gene deletion and complementation strains and determined its environmental adaptation under stressful conditions such as acid, alkali, high salt, bile salt, and oxidation. And the capacity of biofilm formation and pathogenicity of those strains were analyzed and compared. In addition, the interaction between the promoter of STM1863 gene and RcsB protein was analyzed using DNA gel electrophoresis migration assay (electrophoretic mobility shift assay [EMSA]). The experiments revealed that acid adaptability and biofilm formation ability of STM1863 gene deletion strain were significantly weakened compared with the parental and complementary strains. Moreover, the adhesion and invasion ability of STM1863 deletion strain to mouse macrophages was significantly decreased, while the median lethal dose (LD50) increased by 2.148-fold compared with the parental strain. In addition, EMSA confirmed that RcsB protein could bind to the promoter sequence of STM1863 gene, suggesting that the expression of STM1863 gene might be modulated by RcsB. The present study demonstrated for the first time that STM1863, a member of the DUFs protein family, is involved in the modulation of environmental adaptation, biofilm formation, and virulence.

3.
Heliyon ; 10(7): e29124, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623190

RESUMO

Pathogenesis of P. expansum involved different processes and one of them is the recognition between pathogen-host, which in the case of P. expansum is preferably pome fruit. In this work, the possible mechanisms connected to host recognition are addressed through the generation of a subtractive library carried out during the incompatible P. expansum-orange interaction in the initial stages of infection. The generated library was analyzed by massive sequencing and bioinformatic analysis. Of the identified genes, a total of 24 were selected for subsequent expression analysis by RT-qPCR in two incompatible interaction situations. The characterization of the overexpressed genes revealed the presence of CWDEs, ATPases, aldolases, detoxifying enzymes and virulent determinants that could act as effectors related to fungal virulence independently of the host. However, several identified genes, which could not be associated with the virulence of P. expansum under compatible conditions, were related to enzymes to obtain the nutrients necessary for the growth and development of the pathogen under stress conditions through basal metabolism that contributes to expand the range of adaptation of the pathogen to the environment and different hosts.

4.
Drug Des Devel Ther ; 18: 1165-1174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623566

RESUMO

Purpose: Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods: We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results: Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion: Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.


Assuntos
Antioxidantes , Proteínas Tirosina Fosfatases , Ácidos Tricarboxílicos , Humanos , Simulação de Acoplamento Molecular , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
5.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629482

RESUMO

Introduction. The first hybrid resistance/virulence plasmid, combining elements from virulence plasmids described in hypervirulent types of Klebsiella pneumoniae with those from conjugative resistance plasmids, was described in an isolate of sequence type (ST) 147 from 2016. Subsequently, this type has been increasingly associated with these plasmids.Hypothesis or gap statement. The extent of carriage of hybrid virulence/resistance plasmids in nosocomial isolates of K. pneumoniae requires further investigation.Aim. To describe the occurrence of virulence/resistance plasmids among isolates of K. pneumoniae received by the UK reference laboratory, particularly among representatives of ST147, and to compare their sequences.Methodology. Isolates received by the laboratory during 2022 and the first half of 2023 (n=1278) were screened for virulence plasmids by PCR detection of rmpA/rmpA2 and typed by variable-number tandem repeat analysis. Twenty-nine representatives of ST147 (including a single-locus variant) from seven hospital laboratories were subjected to long-read nanopore sequencing using high-accuracy q20 chemistry to provide complete assemblies.Results. rmpA/rmpA2 were detected in 110 isolates, of which 59 belonged to hypervirulent K1-ST23, K2-ST86 and K2-ST65/375. Of the remainder, representatives of ST147 formed the largest group, with 22 rmpA/rmpA2-positive representatives (out of 47 isolates). Representatives were from 19 hospital laboratories, with rmpA/rmpA2-positive isolates from 10. Nanopore sequencing of 29 representatives of ST147 divided them into those with no virulence plasmid (n=12), those with non-New Delhi metallo-ß-lactamase (NDM) virulence plasmids (n=6) and those carrying bla NDM-5 (n=9) or bla NDM-1 (n=2) virulence plasmids. These plasmids were of IncFIB(pNDM-Mar)/IncHI1B(pNDM-MAR) replicon types. Most of the non-NDM virulence plasmids were highly similar to the originally described KpvST147L_NDM plasmid. Those carrying bla NDM-5 were highly similar to one another and to previously described plasmids in ST383 and carried an extensive array of resistance genes. Comparison of the fully assembled chromosomes indicated multiple introductions of ST147 in UK hospitals.Conclusion. This study highlights the high proportion of representatives of ST147 that carry IncFIB(pNDM-Mar)/IncHI1B(pNDM-MAR) hybrid resistance virulence plasmids. It is important to be aware of the high probability that representatives of this type carry these plasmids combining resistance and virulence determinants and of the consequent increased risk to patients.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Virulência/genética , Infecções por Klebsiella/epidemiologia , beta-Lactamases/genética , Plasmídeos/genética , Antibacterianos
6.
Poult Sci ; 103(6): 103733, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38631233

RESUMO

Salmonella is considered one of the most common foodborne pathogens worldwide. The annual number of hospitalizations and deaths related to zoonotic salmonellosis, which is transmitted from animals to humans and infects poultry and meat, is expected to be significant. Hence, the primary aims of this research were to isolate and characterize Salmonella species obtained from an integrated poultry company and identify some virulence, and antimicrobial resistance, with a specific concern about colistin resistance genes. A total of 635 samples collected from various sources in an integrated company in Jordan were screened for Salmonella species accompanying their virulence and antimicrobial resistance genes. Samples were collected from parent stock house drag swabs, broiler farms, premix, cecum at the slaughterhouse level, prechilling and postchilling stages, and the final product. Salmonella species were detected in 3% (6/200) of investigated parent stock house drag swabs, 13.8% (11/80) from cloacal swabs from broiler farms, 16.9% (11/65) from boiler farms premix, 24.4% (11/45) from the cecum at slaughterhouse level, 16.4% (9/55) from the prechilling stage, 37.8% (17/45) from the postchilling stage and 53.3% (24/45) from the final product stage. No isolates were detected in feed mills (0/20), parents' premix (0/40), or hatcheries (0/40). Salmonella isolates were resistant to ciprofloxacin (91.0%), nalidixic acid (86.5%), doxycycline (83.1%), tetracycline (83.1%), sulphamethoxazole-trimethoprim (79.8%) and ampicillin (76.4%). Serotyping shows that S. Infantis was the predominant serovar, with 56.2%. Based on the minimum inhibitory concentration (MIC) test, 39.3% (35/89) of the isolates were resistant to colistin; however, no mcr genes were detected. Among antimicrobial-resistant genes, blaTEM was the most prevalent (88.8%). Furthermore, the spvC, ompA, and ompF virulence genes showed the highest percentages (97.8%, 97.8%, and 96.6%, respectively). In conclusion, Salmonella isolates were found at various stages in the integrated company. S. Infantis was the most prevalent serotype. No mcr genes were detected. Cross-contamination between poultry production stages highlights the importance of good hygiene practices. Furthermore, the presence of virulence genes and the patterns of antimicrobial resistance present significant challenges for public health.

7.
Front Plant Sci ; 15: 1332976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606076

RESUMO

Introduction: Aphanomyces euteiches Drechsler is an oomycete pathogen that affects legume crops, causing root rot, a severe disease of peas (Pisum sativum L.) worldwide. While significant research progress has been made in breeding pea-resistant varieties, there is still a need for a deeper understanding of the diversity of pathogen populations present in breeding nurseries located in various legume-growing regions around the world. Methods: We analysed the diversity of 51 pea-infecting isolates of A. euteiches, which were recovered from four American (Athena, OR; Le Sueur, MN; Mount Vernon, WA; Pullman, WA) and three French (Riec-sur-Belon, Templeux-le-Guérard, Dijon) resistance screening nurseries. Our study focused on evaluating their aggressiveness on two sets of differential hosts, comprising six pea lines and five Medicago truncatula accessions. Results: The isolates clustered into three groups based on their aggressiveness on the whole pea set, confirming the presence of pathotypes I and III. Pathotype I was exclusive to French isolates and American isolates from Athena and Pullman, while all isolates from Le Sueur belonged to pathotype III. Isolates from both pathotypes were found in Mount Vernon. The M. truncatula set clustered the isolates into three groups based on their aggressiveness on different genotypes within the set, revealing the presence of five pathotypes. All the isolates from the French nurseries shared the same Fr pathotype, showing higher aggressiveness on one particular genotype. In contrast, nearly all-American isolates were assigned to four other pathotypes (Us1, Us2, Us3, Us4), differing in their higher aggressiveness on two to five genotypes. Most of American isolates exhibited higher aggressiveness than French isolates within the M. truncatula set, but showed lower aggressiveness than French isolates within the P. sativum set. Discussion: These results provide valuable insights into A. euteiches pathotypes, against which the QTL and sources of resistance identified in these nurseries displayed effectiveness. They also suggest a greater adaptation of American isolates to alfalfa, a more widely cultivated host in the United States.

8.
Foodborne Pathog Dis ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608218

RESUMO

Campylobacter jejuni represents one of the leading causes of bacterial gastroenteritis in humans and is primarily linked to chicken meat contamination. In the present study, we analyzed the virulence and survival genes, antimicrobial resistance, and the clonal distribution of 50 C. jejuni isolates obtained from various sources in 14 chicken slaughterhouses across 8 provinces in South Korea from 2019 to 2022. Furthermore, we determined their genetic relatedness to human-derived isolates registered in PubMLST using multilocus sequence typing (MLST). All isolates harbored various virulence and survival genes (flhA, cadF, cdtA, cdtC, cmeA, and sodB) out of 17 tested genes, as confirmed via polymerase chain reaction analysis. Adherence factor gene virB11 was not detected in any isolate. All isolates harbored 12 or more virulence and survival genes. Antimicrobial susceptibility testing indicated that ciprofloxacin resistance was the most prevalent (84.0%), followed by nalidixic acid (82.0%) and tetracycline (52.0%) resistance. MLST analysis of the isolates revealed 18 sequence types (STs), including four new ones. Overlapping STs between chicken slaughterhouse and human-derived isolates included ST42, ST45, ST50, ST137, ST354, and ST464. Our study identified 11 clonal complexes (CCs), with CC-21 being the most prevalent in both human and chicken slaughterhouse-derived isolates. This study provides comprehensive insights into recent C. jejuni isolates from chicken slaughterhouses, including data on quinolone resistance and virulence factors. The MLST-based genetic relatedness between isolates from humans and chicken slaughterhouses in this study suggests the potential of C. jejuni transmission from chickens to humans through the food chain. This study suggests the need for improved management practices in chicken slaughterhouses to reduce the transmission of chicken slaughterhouse-derived C. jejuni to humans.

9.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612672

RESUMO

Acinetobacter baumannii is a major cause of nosocomial infections, and its highly adaptive nature and broad range of antibiotic resistance enable it to persist in hospital environments. A. baumannii often employs two-component systems (TCSs) to regulate adaptive responses and virulence-related traits. This study describes a previously uncharacterized TCS in the A. baumannii ATCC19606 strain, consisting of a transcriptional sensor, DJ41_1407, and its regulator, DJ41_1408, located adjacent to GacA of the GacSA TCS. Markerless mutagenesis was performed to construct DJ41_1407 and DJ41_1408 single and double mutants. DJ41_1408 was found to upregulate 49 genes and downregulate 43 genes, most of which were associated with carbon metabolism and other metabolic pathways, such as benzoate degradation. MEME analysis revealed a putative binding box for DJ41_1408, 5'TGTAAATRATTAYCAWTWAT3'. Colony size, motility, biofilm-forming ability, virulence, and antibiotic resistance of DJ41_1407 and DJ41_1408 single and double mutant strains were assessed against wild type. DJ41_1407 was found to enhance motility, while DJ41_1408 was found to upregulate biofilm-forming ability, and may also modulate antibiotic response. Both DJ41_1407 and DJ41_1408 suppressed virulence, based on results from a G. mellonella infection assay. These results showcase a novel A. baumannii TCS involved in metabolism, with effects on motility, biofilm-forming ability, virulence, and antibiotic response.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Virulência/genética , Antibacterianos/farmacologia , Biofilmes , Bioensaio
10.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612785

RESUMO

Trueperella pyogenes can cause various infections in the organs and tissues of different livestock (including pigs, cows, goats, and sheep), including mastitis, endometritis, pneumonia, or abscesses. Moreover, diseases induced by T. pyogenes cause significant economic losses in animal husbandry. In recent large-scale investigations, T. pyogenes has been identified as one of the main pathogens causing endometritis in lactating cows. However, the main treatment for the above-mentioned diseases is still currently antibiotic therapy. Understanding the impact of endometritis associated with T. pyogenes on the fertility of cows can help optimize antibiotic treatment for uterine diseases, thereby strategically concentrating the use of antimicrobials on the most severe cases. Therefore, it is particularly important to continuously monitor the prevalence of T. pyogenes and test its drug resistance. This study compared the uterine microbiota of healthy cows and endometritis cows in different cattle farms, investigated the prevalence of T. pyogenes, evaluated the genetic characteristics and population structure of isolated strains, and determined the virulence genes and drug resistance characteristics of T. pyogenes. An amount of 186 dairy cows were involved in this study and 23 T. pyogenes strains were isolated and identified from the uterine lavage fluid of dairy cows with or without endometritis.


Assuntos
Endometrite , Feminino , Humanos , Bovinos , Animais , Ovinos , Suínos , Endometrite/veterinária , Lactação , Virulência/genética , Genótipo , Útero , Cabras
11.
Eur J Med Chem ; 271: 116410, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615409

RESUMO

With the increasing reports of antibiotic resistance in this species, Pseudomonas aeruginosa is a common human pathogen with important implications for public health. Bacterial quorum sensing (QS) systems are potentially broad and versatile targets for developing new antimicrobial compounds. While previous reports have demonstrated that certain amide compounds can inhibit bacterial growth, there are few reports on the specific inhibitory effects of these compounds on bacterial quorum sensing systems. In this study, thirty-one amide derivatives were synthesized. The results of the biological activity assessment indicated that A9 and B6 could significantly inhibit the expression of lasB, rhlA, and pqsA, effectively reducing several virulence factors regulated by the QS systems of PAO1. Additionally, compound A9 attenuated the pathogenicity of PAO1 to Galleria mellonella larvae. Meanwhile, RT-qPCR, SPR, and molecular docking studies were conducted to explore the mechanism of these compounds, which suggests that compound A9 inhibited the QS systems by binding with LasR and PqsR, especially PqsR. In conclusion, amide derivatives A9 and B6 exhibit promising potential for further development as novel QS inhibitors in P. aeruginosa.

12.
Microbiol Spectr ; : e0355423, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619276

RESUMO

There has been a suggestion of a potential protective effect of Helicobacter pylori (H. pylori) in the development of ulcerative colitis (UC). Virulence factor is an important factor in H. pylori, but little is known about the clinical characteristics of ulcerative colitis. In this retrospective study, a total of 322 patients with UC were analyzed. They were divided into three groups based on H. pylori antibody typing classification: type I H. pylori infection group, type II H. pylori infection group, and H. pylori-negative group. The study aimed to analyze the clinical characteristics of different types of H. pylori infection groups. The proportions of disease course, nationality, clinical type, and disease severity among UC patients in different types of H. pylori infection groups exhibited statistically significant differences (P < 0.05). However, no significant differences were observed in terms of sex, age, smoking status, alcohol consumption, body mass index (BMI), or lesion range (P > 0.05). Among the extraintestinal manifestations, the incidence of joint lesions in the type I H. pylori infection group was significantly lower compared with H. pylori-negative group (P < 0.05). The levels of red blood cell, hemoglobin, packed cell volume, albumin, A/G, and alanine aminotransferase were significantly higher in the type I H. pylori infection group compared with both the type II H. pylori infection group and H. pylori-negative group in the hematology index. Conversely, the levels of D-Dimer, C-reactive protein, and erythrocyte sedimentation rate were significantly lower in the type II H. pylori infection group (P < 0.05). In patients with UC, infections with the highly virulent type I H. pylori exhibit a negative correlation with both the severity of the disease and extraintestinal manifestations. While infections with the less virulent type II H. pylori are negatively correlated only with the disease severity. Therefore, the virulence factors of H. pylori play an important role in the regulation of UC. IMPORTANCE: The number of patients with ulcerative colitis (UC) has increased dramatically worldwide, posing a global public health challenge, There has been a suggestion of a potential protective effect of Helicobacter pylori in the development of UC. Virulence factor is an important factor in H. pylori, but high-quality clinical evidence is lacking. This study comprehensively analyzed the clinical characteristics of UC patients with different types of H. pylori infection. Infections with the highly virulent type I H. pylori are found to be negatively correlated with the severity of the disease as well as extraintestinal manifestations, whereas infections with the less virulent type II H. pylori demonstrate a negative correlation solely with disease severity. These results suggest that the virulence factors of H. pylori play a pivotal role in UC. Consequently, virulence factors should be taken into consideration when targeting H. pylori eradication in clinical practice, particularly in UC patients. It is crucial to evaluate the individual benefits to optimize personalized eradication therapies.

13.
Curr Microbiol ; 81(6): 141, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625380

RESUMO

Legionella pneumophila can be transmitted to people, especially immunocompromised patients, via hospital water pipe systems and cause severe pneumonia. The aim of our study was to investigate the presence of major virulence factor genes, ability of biofilms formation, and correlation between presence of Legionella isolates and temperature, pH, and residual chlorine of water. Hundred water samples were collected from nine hospitals in Tehran, Iran. Temperature, pH, and residual chlorine were determined during sampling. Different virulence genes and the ability to form biofilms were subsequently analyzed among the L. pneumophila isolates. Results showed that 12 (12%) samples were positive in culture method and all of the isolates were positive as L. pneumophila species (mip). A correlation was found between Legionella culture positivity and temperature and pH of water, but there was no significant correlation between residual chlorine of water samples and the presence of Legionella. The isolation of Legionella rate in summer and spring was higher than winter and autumn. Twelve (100%) isolates were positive for mip genes, 9 (75%) for dot genes, 8 (66.66%) for hsp, 6 (50%) for lvh, and 4 (33.33%) for rtx. All of the isolates displayed strong ability for biofilm production every three days. Two of these isolates (16.6%) displayed weak ability to form biofilm on the first day of incubation. This study revealed that water sources in hospitals were colonized by virulent Legionella and should be continuously monitored to avoid elevated concentrations of Legionella with visible biofilm formation.


Assuntos
Legionella pneumophila , Legionella , Humanos , Legionella pneumophila/genética , Virulência/genética , Cloro/farmacologia , Irã (Geográfico) , Biofilmes , Hospitais
14.
Biosens Bioelectron ; 256: 116282, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38626615

RESUMO

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.

15.
Future Microbiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629885

RESUMO

Aim: To investigate the antibacterial effects of Corydalis Saxicola bunting total alkaloid (CSBTA) on Porphyromonas gingivalis. Methods: SEM, chemical staining, RT-qPCR and ELISA were used to detect effects of CSBTA on P. gingivalis. Results: CSBTA treatment caused shrinkage and rupture of P. gingivalis morphology, decreased biofilm density and live bacteria in biofilm, as well as reduced mRNA expression of virulence genes hagA, hagB, kgp, rgpA and rgpB of P. gingivalis. Furthermore, NOK cells induced by CSBTA-treated P. gingivalis exhibited lower IL-6 and TNF-α expression levels. Conclusion: CSBTA is able to kill free P. gingivalis, disrupt the biofilm and weaken the pathogenicity of P. gingivalis. It has the potential to be developed as a drug against P. gingivalis infection.

16.
Front Cell Infect Microbiol ; 14: 1367111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606296

RESUMO

Introduction: Klebsiella pneumoniae can cause a wide range of infections. Hypervirulent K. pneumoniae (hvKp), particularly associated with the K1 and K2 capsular types, is an increasingly significant microorganism with the potential to cause invasive infections, including renal abscesses. Despite the rising prevalence of hvKp infections, information on renal abscesses caused by K. pneumoniae is limited, and the clinical significance of hvKp associated with specific virulence genes remains elusive. Methods: This study performed at a 1200-bed tertiary hospital sought to identify the clinical and microbiological characteristics of renal abscesses caused by K. pneumoniae, focusing on various virulence genes, including capsular serotypes and multilocus sequence typing (MLST). Results: Over an 8-year period, 64 patients with suspected renal abscesses were reviewed. Ten patients diagnosed with K. pneumoniae-related renal abscesses were ultimately enrolled in the study. Among the isolates from the 10 patients, capsular serotype K2 was predominant (40.0%), followed by K1 (30.0%). The most common sequence type by MLST was 23 (40.0%). In particular, six patients (60.0%) harbored specific genes indicative of hvKp: iucA, peg-344, rmpA, and rmpA2. Conclusions: Our findings highlight the importance of hvKp as a pathogen in renal abscesses. Although the nature of hvKp is relatively unknown, it is widely recognized as a highly virulent pathogen that can infect relatively healthy individuals of various ages and simultaneously cause infections at multiple anatomical sites. Therefore, when treating patients with K. pneumoniae-related renal abscesses, caution is necessary when considering the characteristics of hvKp, such as potential bacteremia, multi-organ abscess formation, and metastatic spread.


Assuntos
Infecções por Klebsiella , Infecções Urinárias , Humanos , Virulência/genética , Klebsiella pneumoniae , Abscesso/complicações , Abscesso/tratamento farmacológico , Tipagem de Sequências Multilocus , Relevância Clínica , Antibacterianos/uso terapêutico , Infecções Urinárias/complicações , Infecções por Klebsiella/microbiologia
17.
Pest Manag Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578108

RESUMO

BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.

18.
Plant Pathol J ; 40(2): 151-159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606445

RESUMO

Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars. Previously, we developed an efficient bioassay method for investigating resistance levels with 21 resistant and moderately resistant cultivars of radish against a strain Pcc KACC 10421. In this study, our research expanded to investigate the resistance of radish cultivars against six Pcc strains, KACC 10225, KACC 10421, ATCC 12312, ATCC 15713, LY34, and ECC 301365. To this end, the virulence of the six Pcc strains was determined based on the development of bacterial soft rot in seedlings of four susceptible radish cultivars. The results showed that the Pcc strains exhibited different virulence in the susceptible cultivars. To explore the race differentiation of Pcc strains corresponding to the resistance in radish cultivars, we investigated the occurrence of bacterial soft rot caused by the six Pcc strains on the 21 resistant and moderate resistant cultivars. Our results showed that the average values of the area under the disease progress curve were positively correlated with the virulence of the strains and the number of resistant cultivars decreased as the virulence of Pcc strains increased. Taken together, our results suggest that the resistance to Pcc of the radish cultivars commercialized in Korea is more likely affected by the virulence of Pcc strains rather than by race differentiation of Pcc.

19.
Mol Plant Pathol ; 25(4): e13454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619507

RESUMO

Apple Glomerella leaf spot (GLS) is an emerging fungal disease caused by Colletotrichum fructicola and other Colletotrichum species. These species are polyphyletic and it is currently unknown how these pathogens convergently evolved to infect apple. We generated chromosome-level genome assemblies of a GLS-adapted isolate and a non-adapted isolate in C. fructicola using long-read sequencing. Additionally, we resequenced 17 C. fructicola and C. aenigma isolates varying in GLS pathogenicity using short-read sequencing. Genome comparisons revealed a conserved bipartite genome architecture involving minichromosomes (accessory chromosomes) shared by C. fructicola and other closely related species within the C. gloeosporioides species complex. Moreover, two repeat-rich genomic regions (1.61 Mb in total) were specifically conserved among GLS-pathogenic isolates in C. fructicola and C. aenigma. Single-gene deletion of 10 accessory genes within the GLS-specific regions of C. fructicola identified three that were essential for GLS pathogenicity. These genes encoded a putative non-ribosomal peptide synthetase, a flavin-binding monooxygenase and a small protein with unknown function. These results highlight the crucial role accessory genes play in the evolution of Colletotrichum pathogenicity and imply the significance of an unidentified secondary metabolite in GLS pathogenesis.


Assuntos
Colletotrichum , Fabaceae , Malus , Phyllachorales , Colletotrichum/genética , Virulência/genética , Genômica
20.
J Agric Food Chem ; 72(15): 8415-8422, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573226

RESUMO

Aspergillus westerdijkiae can infect many agricultural products including cereals, grapes, and pear. Pathogenic fungi secrete diverse effectors as invasive weapons for successful invasion the host plant. During the pathogen-host interaction, 4486 differentially expressed genes were observed in A. westerdijkiae with 2773 up-regulated and 1713 down-regulated, whereas 8456 differentially expressed genes were detected in pear fruits with 4777 up-regulated and 3679 down-regulated. A total of 309 effector candidate genes were identified from the up-regulated genes in A. westerdijkiae. Endoglucanase H (AwEGH) was significantly induced during the pathogen-host interaction. Deletion of AwEGH resulted in altered fungal growth and morphology and reduced conidia production and germination compared to the wild-type. Further experiments demonstrated that AwEGH plays a role in cell wall integrity. Importantly, disruption of AwEGH significantly reduced the fungal virulence on pear fruits, and this defect can be partly explained by the impaired ability of A. westerdijkiae to penetrate host plants.


Assuntos
Aspergillus , Celulase , Pyrus , Pyrus/genética , Celulase/genética , Virulência , Frutas/genética , Proteínas Fúngicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...